Centrosome dynamics in early embryos of Caenorhabditis elegans.
نویسندگان
چکیده
The early Caenorhabditis elegans embryo divides with a stereotyped pattern of cleavages to produce cells that vary in developmental potential. Differences in cleavage plane orientation arise between the anterior and posterior cells of the 2-cell embryo as a result of asymmetries in centrosome positioning. Mechanisms that position centrosomes are thought to involve interactions between microtubules and the cortex, however, these mechanisms remain poorly defined. Interestingly, in the early embryo the shape of the centrosome predicts its subsequent movement. We have used rhodamine-tubulin and live imaging techniques to study the development of asymmetries in centrosome morphology and positioning. In contrast to studies using fixed embryos, our images provide a detailed characterization of the dynamics of centrosome flattening. In addition, our observations of centrosome behavior in vivo challenge previous assumptions regarding centrosome separation by illustrating that centrosome flattening and daughter centrosome separation are distinct processes, and by revealing that nascent daughter centrosomes may become separated from the nucleus. Finally, we provide evidence that the midbody specifies a region of the cortex that directs rotational alignment of the centrosome-nucleus complex and that the process is likely to involve multiple interactions between microtubules and the cortex; the process of alignment involves oscillations and overshoots, suggesting a multiplicity of cortical sites that interact with microtubules.
منابع مشابه
ASSET: a robust algorithm for the automated segmentation and standardization of early Caenorhabditis elegans embryos.
The early Caenorhabditis elegans embryo is an attractive model to investigate evolutionarily conserved cellular mechanisms. However, there is a paucity of automated methods to gather quantitative information with subcellular precision in this system. We developed ASSET (Algorithm for the Segmentation and the Standardization of C. elegans Time-lapse recordings) to fill this need. ASSET automatic...
متن کاملCasein kinase II is required for proper cell division and acts as a negative regulator of centrosome duplication in Caenorhabditis elegans embryos
Centrosomes are the primary microtubule-organizing centers that orchestrate microtubule dynamics during the cell cycle. The correct number of centrosomes is pivotal for establishing bipolar mitotic spindles that ensure accurate segregation of chromosomes. Thus, centrioles must duplicate once per cell cycle, one daughter per mother centriole, the process of which requires highly coordinated acti...
متن کاملAutomated tracking and analysis of centrosomes in early Caenorhabditis elegans embryos
MOTIVATION The centrosome is a dynamic structure in animal cells that serves as a microtubule organizing center during mitosis and also regulates cell-cycle progression and sets polarity cues. Automated and reliable tracking of centrosomes is essential for genetic screens that study the process of centrosome assembly and maturation in the nematode Caenorhabditis elegans. RESULTS We have devel...
متن کاملCentrosome Movement in the Early Divisionsof Caenorhabditis elegans: A Cortical Site Determining Centrosome Position
In Caenorhabditis elegans embryos, early blastomeres of the P cell lineage divide successively on the same axis. This axis is a consequence of the specific rotational movement of the pair of centrosomes and nucleus (Hyman, A. A., and J. G. White. 1987. J. Cell Biol. 105:2123-2135). A laser has been used to perturb the centrosome movements that determine the pattern of early embryonic divisions....
متن کاملMutations in a beta-tubulin disrupt spindle orientation and microtubule dynamics in the early Caenorhabditis elegans embryo.
The early Caenorhabditis elegans embryo contains abundant transcripts for two alpha- and two beta-tubulins, raising the question of whether each isoform performs specialized functions or simply contributes to total tubulin levels. Our identification of two recessive, complementing alleles of a beta-tubulin that disrupt nuclear-centrosome centration and rotation in the early embryo originally su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 111 ( Pt 20) شماره
صفحات -
تاریخ انتشار 1998